Whisking in air: encoding of kinematics by VPM neurons in awake rats.
نویسندگان
چکیده
Rodent whisking behavior generates two types of neural signals: one produced by whisker contact with objects; the other by movements in air. While kinematic signals generated by contact reliably activate neurons at all levels of the trigeminal neuraxis, the extent to which the kinematics of whisking in air are reliably encoded at each level remains unclear. Previously, we showed that the responses of trigeminal ganglion (TG) neurons in awake, head-fixed rats are correlated with whisking kinematic parameters, but that individual neurons may differ substantially in the reliability of their kinematic encoding. Here, we extend that analysis to neurons in the ventral posterior medial (VPM) nucleus. Three possible coding strategies were examined: (1) firing rate across an entire movement; (2) the probability of individual spikes as a function of the instantaneous movement trajectory; and (3) the coherence between spikes and whisking. While VPM neurons were clearly responsive to variations in whisker kinematics during whisking in air, the encoding of whisker kinematics by VPM neurons was less consistent than that of TG neurons. Furthermore, we found that, in VPM as in TG, movement direction is an important determinant of unit responsiveness during whisking in air.
منابع مشابه
Encoding of stimulus frequency and sensor motion in the posterior medial thalamic nucleus.
In all sensory systems, information is processed along several parallel streams. In the vibrissa-to-barrel cortex system, these include the lemniscal system and the lesser-known paralemniscal system. The posterior medial nucleus (POm) is the thalamic structure associated with the latter pathway. Previous studies suggested that POm response latencies are positively correlated with stimulation fr...
متن کاملWhisking in air: encoding of kinematics by trigeminal ganglion neurons in awake rats.
Active sensing requires the brain to distinguish signals produced by external inputs from those generated by the animal's own movements. Because the rodent whisker musculature lacks proprioceptors, we asked whether trigeminal ganglion neurons encode the kinematics of the rat's own whisker movements in air. By examining the role of kinematics, we have extended previous findings showing that many...
متن کاملWhisking-Related Changes in Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus of Awake Mice.
The thalamus transmits sensory information to the neocortex and receives neocortical, subcortical, and neuromodulatory inputs. Despite its obvious importance, surprisingly little is known about thalamic function in awake animals. Here, using intracellular and extracellular recordings in awake head-restrained mice, we investigate membrane potential dynamics and action potential firing in the two...
متن کاملThalamic bursting in rats during different awake behavioral states.
Thalamic neurons have two firing modes: tonic and bursting. It was originally suggested that bursting occurs only during states such as slow-wave sleep, when little or no information is relayed by the thalamus. However, bursting occurs during wakefulness in the visual and somatosensory thalamus, and could theoretically influence sensory processing. Here we used chronically implanted electrodes ...
متن کاملVibrissae motor cortex unit activity during whisking.
Rats generate stereotyped exploratory (5-12 Hz) vibrissa movements when navigating through their environment. Like other rhythmic behaviors, the production of whisking relies on a subcortical pattern generator. However, the relatively large vibrissae representation in motor cortex (vMCx) suggests that cortex also contributes to the control of whisker movements. The goal of this study was to exa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Somatosensory & motor research
دوره 27 3 شماره
صفحات -
تاریخ انتشار 2010